Tipps zur Serie 2:

Antgabe 2.1;

Repetiert die Axione der Norm und des Skalarproduktes und beneist sie dann für die jeneiligen Funktionen. Versucht nie immer möglichst allgemein zu bleiben und die Steligkeit der Funktionen anszunntzen.

Aufgabe 2.2:

a)

Befrachtet and hier die 3 Axiome eine Metrik. Macht ench luine zu grosse Arbeit, ihr koint rieles direkt ans der enblidischen Norm ableiten. Wichtig: Um die Dreiechsungleichung zu beneisen, misst ihr eine Fallunterscheidung machen? (Ihr wollt d(x,y) \(\) d(x,z) + d(\(\) zeigen, es gibt 5 Fälle.)

liberlegt end, in weldum Fall der Metrik ihr seid, md was der Grenzwet der Folge ist.

mod kan man sich fast schon selbst denken.

Antgabe 2.3: Wiederum die Metrikazione betrachten Anfgabe 2.4; Erster Einblich in meludimensionale Funktionen, unbedingt autpasser? Die Antgabe soll ench Tüchen der Stetigheitsbetrachtung antzeigen. Betrachtet x=0 & x ≠0 gesondert. Für x +0 könnt ihr tur y die Geradegleichung y= a·x, x ElR einsetzer, md den Grenznert danach vie gewohnt berechnen Einfach einsetzen & berednen. Rechts seht ihr noch einen Plot es euch veiter hilft. Antgabe 2.5; Für Niveaumengen gilt f(x,y)= c ElR. Stellt

Fir Niveaumengen gilt $f(x,y) = C \in \mathbb{R}$. Stellt die Gleichung auf & versucht sie zu interpretieren.

Antgabe 7.6:
a)
Stellt die übliche Definition auf, einfach mit
einer allgemeinen Norm anstatt der Standard-
norm. Als Reliapitulation: Eine Menge ist genan
dan ofter, ven man fin jeden Punkt in
der Munge einen Ball mit Rading >0 finder
lean, nelder elsenfalls vollkommen in der
Menge liegt. (Das jetzt noch mathematisch)
b)
Notet eve Definition aux a) sourie die
Agnivalenz aller Normen auf IRh aus!
Seien II. IIa, II. IIb zuei unterschiedliche Normen ant
den IR", dans gilt
c. . _a ∈ . _b ∈ (. . _a für c, C ∈ ?
Die Normen haben also dieselben konvergenten
Folgen.
Zeigt beide Richtungen der Anssage.
c)
Normale E, S Definition, nor mit einer
allgeneinen Norm.
$\langle d \rangle$
Analoges Vorgelier zn b)